Nuestro sitio web utiliza cookies para mejorar y personalizar su experiencia y para mostrar anuncios (si los hay). Nuestro sitio web también puede incluir cookies de terceros como Google Adsense, Google Analytics, Youtube. Al usar el sitio web, usted consiente el uso de cookies. Hemos actualizado nuestra Política de Privacidad. Por favor, haga clic en el botón para consultar nuestra Política de Privacidad.

Gobernanza de la IA: Los Tópicos del Debate Internacional

Qué se discute en la gobernanza internacional de la IA

La gobernanza internacional de la inteligencia artificial (IA) congrega a gobiernos, organizaciones internacionales, empresas, instituciones académicas y actores de la sociedad civil para establecer pautas, estándares y herramientas destinadas a orientar cómo se desarrolla y emplea esta tecnología. Las discusiones integran dimensiones técnicas, éticas, económicas, de seguridad y geopolíticas. A continuación se detallan los asuntos clave, ejemplos específicos y los mecanismos que distintos foros proponen o ya ponen en práctica.

Riesgos para la seguridad y la integridad

La atención dedicada a la seguridad abarca errores involuntarios, usos malintencionados y repercusiones estratégicas de gran alcance. Entre los aspectos esenciales se encuentran:

  • Riesgos sistémicos: la posibilidad de que modelos extremadamente avanzados se comporten de manera inesperada o superen los mecanismos de control, comprometiendo infraestructuras críticas.
  • Uso dual y militarización: la incorporación de IA en armamento, sistemas de vigilancia y operaciones de ciberataque. En debates de la ONU y del Convenio sobre Ciertas Armas Convencionales se analizan opciones para regular o incluso vetar sistemas de armas totalmente autónomos.
  • Reducción del riesgo por diseño: estrategias como evaluaciones adversarias, auditorías de seguridad y la exigencia de análisis de riesgo previos a cualquier implementación.

Ejemplo: en el escenario multilateral se debate la formulación de reglas obligatorias relacionadas con SALA (sistemas de armas letales autónomas) y la implementación de mecanismos de verificación destinados a impedir su proliferación.

Privacidad, vigilancia y protección de los derechos humanos

La IA plantea retos para derechos civiles y libertades públicas:

  • Reconocimiento facial y vigilancia masiva: riesgo de erosión de la privacidad y discriminación. Varios países y la Unión Europea estudian restricciones o moratorias para usos masivos.
  • Protección de datos: gobernanza del uso de grandes volúmenes de datos para entrenar modelos, consentimiento, minimización y anonimización.
  • Libertad de expresión e información: moderación automatizada, generación de desinformación y deepfakes que afectan procesos democráticos.

Caso: la proliferación de campañas de desinformación impulsadas por la generación automática de contenido ha desencadenado discusiones en foros electorales y ha motivado propuestas que buscan imponer obligaciones de transparencia respecto al empleo de sistemas generativos dentro de las campañas.

Equidad, no discriminación y inclusión

Los modelos pueden reflejar o incluso intensificar sesgos existentes cuando los datos de entrenamiento no resultan suficientemente representativos:

  • Discriminación algorítmica: revisiones independientes, indicadores de equidad y procedimientos de corrección.
  • Acceso y desigualdad global: posibilidad de que la capacidad tecnológica se concentre en unas pocas naciones o corporaciones; urgencia de impulsar la transferencia tecnológica y la cooperación para fortalecer el desarrollo local.

Dato y ejemplo: diversas investigaciones han evidenciado que los modelos formados con información sesgada ofrecen un rendimiento inferior para los colectivos menos representados; por esta razón, crece la demanda de iniciativas como las evaluaciones de impacto social y los requisitos de pruebas públicas.

Transparencia, explicabilidad y trazabilidad

Los reguladores analizan cómo asegurar que los sistemas avanzados resulten entendibles y susceptibles de auditoría:

  • Obligaciones de transparencia: comunicar cuando una resolución automatizada impacta a una persona, divulgar documentación técnica (fichas del modelo, fuentes de datos) y ofrecer vías de reclamación.
  • Explicabilidad: proporcionar niveles adecuados de detalle técnico adaptados a distintos tipos de audiencia (usuario final, autoridad reguladora, instancia judicial).
  • Trazabilidad y registro: conservar registros de entrenamiento y operación que permitan realizar auditorías en el futuro.

Ejemplo: la propuesta legislativa de la Unión Europea clasifica sistemas según riesgo y exige documentación detallada para los considerados de alto riesgo.

Cumplimiento y responsabilidad legal

La cuestión de cómo asignar la responsabilidad por daños ocasionados por sistemas de IA se ha convertido en un punto clave:

  • Regímenes de responsabilidad: se discute si debe recaer en el desarrollador, el proveedor, el integrador o el usuario final.
  • Certificación y conformidad: incluyen esquemas de certificación previa, evaluaciones independientes y posibles sanciones en caso de incumplimiento.
  • Reparación a las víctimas: se plantean vías ágiles para ofrecer compensación y soluciones de remediación.

Datos normativos: la propuesta de la UE prevé sanciones ajustadas a la gravedad, incluidas multas de gran envergadura ante incumplimientos en sistemas clasificados como de alto riesgo.

Derechos de propiedad intelectual y disponibilidad de datos

El uso de contenidos para entrenar modelos ha generado tensiones entre creación, copia y aprendizaje automático:

  • Derechos de autor y recopilación de datos: litigios y solicitudes de claridad sobre si el entrenamiento constituye uso legítimo o requiere licencia.
  • Modelos y datos como bienes estratégicos: debates sobre si imponer licencias obligatorias, compartir modelos en repositorios públicos o restringir exportaciones.

Varios litigios recientes surgidos en distintos países han puesto en entredicho la legalidad del entrenamiento de modelos con material protegido, lo que está acelerando ajustes normativos y promoviendo acuerdos entre las partes involucradas.

Economía, empleo y competencia

La IA es capaz de remodelar mercados, empleos y la organización empresarial:

  • Sustitución y creación de empleo: diversas investigaciones revelan impactos mixtos: ciertas labores se automatizan mientras otras reciben apoyo tecnológico, por lo que resultan esenciales las políticas activas de capacitación.
  • Concentración de mercado: existe la posibilidad de que surjan monopolios debido al dominio de datos y de modelos centrales, lo que impulsa el debate sobre competencia e interoperabilidad.
  • Impuestos y redistribución: se analizan esquemas de tributación sobre ganancias ligadas a la automatización, así como mecanismos para sostener la protección social y los programas de recualificación.
Sustentabilidad del entorno

El impacto energético y material asociado al entrenamiento y funcionamiento de los modelos se encuentra sujeto a regulaciones y prácticas recomendadas:

  • Huella de carbono: la preparación de modelos de gran escala puede requerir un uso considerable de energía; se debaten métricas y posibles límites.
  • Optimización y transparencia energética: adopción de sistemas de eficiencia, divulgación del consumo y transición hacia infraestructuras alimentadas con fuentes renovables.

Estudio relevante: investigaciones han mostrado que el entrenamiento intensivo de modelos de lenguaje puede generar emisiones equivalentes a decenas o cientos de toneladas de CO2 si no se optimiza el proceso.

Normas técnicas, estándares y interoperabilidad

La adopción de estándares facilita seguridad, confianza y comercio:

  • Marco de normalización: desarrollo de estándares técnicos internacionales sobre robustez, interfaces y formatos de datos.
  • Interoperabilidad: garantizar que sistemas distintos puedan cooperar con garantías de seguridad y privacidad.
  • Rol de organismos internacionales: OCDE, UNESCO, ONU, ISO y foros regionales participan en la armonización normativa.

Ejemplo: la OCDE elaboró una serie de principios sobre la IA que se han convertido en una guía para numerosas políticas públicas.

Verificación, cumplimiento y mecanismos multilaterales

Sin mecanismos de verificación creíbles, las reglas quedan en papel:

  • Inspecciones y auditorías internacionales: propuestas para observatorios multilaterales que supervisen cumplimiento y compartan información técnica.
  • Mecanismos de cooperación técnica: asistencia para países con menos capacidad técnica, intercambio de mejores prácticas y fondos para fortalecer gobernanza.
  • Sanciones y medidas comerciales: discusión sobre controles a la exportación de tecnologías sensibles y medidas diplomáticas ante incumplimientos.

Caso: las limitaciones impuestas al comercio de semiconductores ilustran cómo la tecnología de IA puede transformarse en un asunto de política comercial y de seguridad.

Instrumentos normativos y recursos aplicados

Las respuestas normativas varían entre instrumentos vinculantes y enfoques flexibles:

  • Regulación vinculante: leyes nacionales y regionales que imponen obligaciones y sanciones (ejemplo: propuesta de ley en la Unión Europea).
  • Autorregulación y códigos de conducta: guías emitidas por empresas y asociaciones que pueden ser más ágiles pero menos exigentes.
  • Herramientas de cumplimiento: evaluaciones de impacto, auditorías independientes, etiquetas de conformidad, y entornos experimentales regulatorios para probar políticas.

Gobernanza democrática y participación de la ciudadanía

La legitimidad de las reglas depende de la inclusión:

  • Procesos participativos: consultas públicas, comités de ética y representación de comunidades afectadas.
  • Educación y alfabetización digital: para que la ciudadanía entienda riesgos y participe en decisiones.

Ejemplo: en distintos países, varias iniciativas de consulta ciudadana han incidido en las exigencias de transparencia y en las restricciones aplicadas al empleo del reconocimiento facial.

Relevantes presiones en el escenario geopolítico

La carrera por la primacía en IA implica riesgos de fragmentación:

  • Competencia tecnológica: inversiones estratégicas, subsidios y alianzas que pueden crear bloques tecnológicos divergentes.
  • Normas divergentes: diferentes enfoques regulatorios (más restrictivo versus más permissivo) afectan comercio y cooperación internacional.

Resultado: la gobernanza global intenta conciliar la armonización regulatoria con la autonomía tecnológica.

Acciones y referencias multilaterales

Existen varias iniciativas que sirven de marco de referencia:

  • Principios de la OCDE: lineamientos orientadores sobre la IA confiable.
  • Recomendación de la UNESCO: marco ético para orientar políticas nacionales.
  • Propuestas regionales: la Unión Europea impulsa un reglamento centrado en riesgo y obligaciones de transparencia y seguridad.

Estas iniciativas muestran la combinación de normas no vinculantes y propuestas legislativas concretas que avanzan en distintos ritmos.

La gobernanza internacional de la IA es un entramado dinámico que debe integrar exigencias técnicas, valores democráticos y realidades geopolíticas. Las soluciones efectivas requieren marcos normativos claros, capacidades de verificación creíbles y mecanismos

By Otilia Adame Luevano

También te puede gustar